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In our earlier work we developed an algorithm for approximating the locations
of discontinuities and the magnitudes of jumps of a bounded function by means of
its truncated Fourier series. The algorithm is based on some asymptotic expansion
formulas. In the present paper we give proofs for those formulas.  2001 Academic Press
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INTRODUCTION

The problem of locating the discontinuities of a function by means of its truncated
Fourier series, an interesting question in and of itself, arises naturally from an attempt to
overcome the Gibbs phenomenon: the poor approximative properties of the Fourier partial
sums of a discontinuous function.

In [3], Cai et al. developed the idea already introduced in their previous papers and
suggested a method for the reconstruction of a discontinuous function from the partial
sums of its Fourier series. A key step of the method is the accurate approximation of the
locations of singularities and the magnitudes of jumps of the function. Namely, let g be
a 2π -periodic function with a finite number, M , of jump discontinuities that is piecewise
smooth on the period. In addition, let us assume that the first 2n + 1 Fourier coefficients
of the function are known. If G(θ) = (π − θ)/2, θ ∈ (0,2π), is the 2π -periodic sawtooth
function, then the function g can be represented as

g(θ) = 1

π

M−1∑
m=0

[g]mG(θ − θm(g))+ gc(θ), (1)

where θm(g) and [g]m, m = 0,1, . . . ,M − 1, are the locations of discontinuities and the
associated jumps of the function g, and gc is a 2π periodic continuous function, which is
piecewise smooth on [−π,π].
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Thus, the problem is to find a good approximation to the constants θm(g) and [g]m,
m = 0,1, . . . ,M − 1, given the first 2n + 1 Fourier coefficients of the function g. Then
gc could be recovered from the partial sums of its Fourier series using identity (1) and the
undesirable Gibbs phenomenon could be avoided.

Eckhoff [5, 6] utilized Prony’s method for the approximation of the constants θm(g). As
a result, he developed an efficient method of approximating the locations of singularities
and the jumps of a piecewise smooth function with multiple discontinuities. The
approximations are found as the solution of a system of algebraic equations.

Later, Bauer [2] introduced the idea of band-pass filters to find the discontinuity
locations. He utilizes a global filter to find a number of discontinuities and their
approximate locations. Then a local subcell filter is used to refine the accuracy of the
singularity locations.

Another approach to the recovery of a piecewise smooth function was suggested by
Geer and Banerjee (see [1, 8, 9]). The authors introduced a family of periodic functions
with “built-in” discontinuities to reconstruct a piecewise smooth function with exponential
accuracy. The main assumption of the method is knowledge of the jumps and the locations
of discontinuities of a given function. To find these, the authors suggested the following:
use the well-known formula of symmetric difference of the partial sums of Fourier series
that determines the jumps of a bounded function to obtain a first estimate for the location
of discontinuities; then utilize a modified least-squares method to improve the accuracy of
approximation.

Recently Gelb and Tadmor [10] utilized the generalized conjugate partial sums of the
Fourier series to detect the jump discontinuities of a piecewise smooth function. They
introduced so called “concentration factors” in order to improve the convergence rate.
It should be mentioned that one of the families of concentration factors they considered
corresponds to a differentiated Fourier series.

In our earlier work (see [15, 16]) we developed an algorithm for approximating the
locations of discontinuities and the magnitudes of jumps of a bounded function. The
algorithm is based on special asymptotic expansion formulas. In the present paper we give
proofs for those formulas.

PRELIMINARIES

Throughout this paper we use the following general notations: N , Z+, Z, and R are
the sets of positive integers, nonnegative integers, integers, and real numbers, respectively.
L[a, b] is the space of integrable functions on [a, b]. By Cq [a, b], q ∈ Z+, we denote the
space of q-times continuously differentiable functions on [a, b], where C0[a, b] ≡ C[a, b]
is the space of continuous functions with uniform norm ‖ · ‖[a,b]. By C−1[a, b] we denote
the space of functions on [a, b] that may have only jump discontinuities and are normalized
by the condition g(θ) = (g(θ+)+ g(θ−))/2, θ ∈ (a, b). (Here, and elsewhere, g(θ+) and
g(θ−) mean the right- and left-hand-side limits of a function g at a point θ , respectively.)

g(−r), r ∈ N , is defined as follows: for any g ∈ L[−π,π],

g(−r)(τ ) ≡
∫

g(−r+1)(τ ) dτ,
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where g(0) ≡ g, and the constants of integration are successively determined by the
condition ∫ π

−π

g(−r)(τ ) dτ = 0, r ∈ N.

By K we denote constants, possibly depending on some fixed parameters and in general
distinct in different formulas. Sometimes the important arguments of K will be written
explicitly in the expressions for it. For positive quantities An and Bn, possibly depending
on some other variables as well, we write An = o(Bn), An = O(Bn), or An 
 Bn, if
limn→∞ An/Bn = 0, supn∈N An/Bn < ∞, or K1 < An/Bn < K2, n ∈ N , respectively,
where K1 > 0 and K2 > 0 are some absolute constants.

All functions below are assumed to be 2π -periodic with the obvious exceptions.
If g ∈ L[−π,π], then g has a Fourier series with respect to the trigonometric system

{1, cosnθ, sinnθ}∞n=1, and we denote the nth partial sum of the Fourier series of g by
Sn(g; ·); i.e.,

Sn(g; θ)= a0(g)

2
+

n∑
k=1

(ak(g) coskθ + bk(g) sin kθ) = 1

π

∫ π

−π

g(τ )Dn(τ − θ) dτ,

where

ak(g) = 1

π

∫ π

−π

g(τ ) coskτ dτ and bk(g) = 1

π

∫ π

−π

g(τ ) sinkτ dτ

are the kth Fourier coefficients of the function g, and

Dn(θ) = 1

2
+

n∑
k=1

coskθ =




sin(n + 1
2 )θ

2 sin θ
2

for θ /∈ 2πZ,

n + 1

2
for θ ∈ 2πZ

(2)

is the Dirichlet kernel.
By S̃n(g; ·) we denote the nth partial sum of the series conjugate to the Fourier series;

i.e.,

S̃n(g; θ)=
n∑

k=1

(ak(g) sin kθ − bk(g) coskθ) = − 1

π

∫ π

−π

g(τ )D̃n(τ − θ) dτ,

where

D̃n(θ) =
n∑

k=1

sinkθ

is the kernel conjugate to the Dirichlet kernel.
Correspondingly, by g̃ we denote the conjugate function; i.e.,

g̃(θ) = lim
h→0

{
− 1

π

∫ π

h

g(θ + τ )− g(θ − τ )

2 tan τ
2

dτ

}
,

which exists and is finite almost everywhere for any g ∈ L[−π,π] (cf. [13, Theorem,
p. 79]).
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DEFINITION [21]. Let # = (λk)
∞
k=1 be a nondecreasing sequence of positive numbers

such that
∑∞

k=1 1/λk = ∞. A function g is said to have #-bounded variation on [a, b], i.e.,
g ∈ #BV [a, b], if

sup
&

n∑
k=1

|g(x2k)− g(x2k−1)|
λk

< ∞,

where & is an arbitrary system of disjoint intervals (x2k−1, x2k) ⊂ [a, b].
If λk = 1, k ∈ N , then #BV [a, b] coincides with the Jordan class V [a, b] of functions

of bounded variation.
We say that a function g is of harmonic bounded variation on [a, b], i.e., g ∈

HBV [a, b], if λk = k, k ∈ N .
If there is no ambiguity, we will usually suppress the dependence on the domain and

simply write C, #BV , etc.
In what follows we need the following additional notations.
If γ ∈ R is fixed, then for the sawtooth function G we set G(γ ; θ)≡ G(θ − γ ), θ ∈ R.
It is trivial to check that

S(r+1)
n (G(−q)(γ ; ·); θ)= D̂

(r−q)
n (θ − γ )

=
n∑

k=1

kr−q cos

(
k(θ − γ )+ (r − q)π

2

)
(3)

and

S̃(r+1)
n (G(−q)(γ ; ·); θ)= D̃

(r−q)
n (θ − γ )

=
n∑

k=1

kr−q sin

(
k(θ − γ )+ (r − q)π

2

)
(4)

for r, q ∈ Z+ and γ ∈ R, where D̂n(τ ) ≡ Dn(τ)− 1
2 .

By M ≡ M(g) we denote the number of discontinuities of the function g ∈ C−1. By
θm ≡ θm(g) and [g]m ≡ g(θm+)− g(θm−), m = 0,1, . . . ,M − 1, we denote the points of
discontinuity and the associated jumps of a function g ∈ C−1.

For a fixed r ∈ N and g ∈ C−1, we set

DSn(r;g; ·)≡ rπ

nr

{
(−1)(r−1)/2S(r)

n (g; ·), if r is odd,

(−1)(r/2)−1S̃(r)
n (g; ·), if r is even.

(5)

For a fixed r ∈ N and M ∈ N , the points θm(r;g;n), m = 0,1, . . . ,M − 1, are defined
via the condition

|DSn(r;g; θm(r;g;n))| = max{|DSn(r;g; θ)| : θ ∈ [θm −*m(g), θm +*m(g)]}, (6)

where *m(g) = 1
3 min{|θm −K|mod 2π : k = 0,1, . . . ,M − 1 and k �= m}.

To simplify notations, we sometimes omit fixed parameters and write DSn(θ) or
DSn(g; θ). Similarly we simplify the notation for θm(r;g;n).

In what follows we often use Bernstein’s inequality (cf. [20, Theorem 1.22.1, p. 5]):
If Tn is a trigonometric polynomial of degree n ∈ N , then

‖T ′
n‖[a,b] ≤ 2πn

b − a
‖Tn‖[a,b], (7)

where [a, b] ⊂ [−π,π].
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LEMMA 1. Let s ∈ Z be such that s �= −1. Then the following expansion holds for
every fixed a ∈ N :

n∑
k=1

ks =




ns+1

s + 1
+ ns

2
+ sns−1

12
− s(s − 1)(s − 2)ns−3

720
· · · for s ≥ 0,

ζ(−s) + (n + 1)s+1

s + 1
− (n + 1)s

2
+ · · · +O((n+ 1)s−a) for s < 0,

(8)

where the last term in the expansion for s ≥ 0 contains either n or n2, and ζ(s) =∑∞
k=1 k

−s , s ≥ 1, is the Riemman zeta function.

Proof. See [18, p. 25] and [18, pp. 23, 25, and 26] (or [12, p. 1]) for the cases s < 0
and s ≥ 0, respectively.

LEMMA 2. Let a function g ∈ Cq , q ≥ 1, be such that g(q) ∈ V . Then

(a) g̃ ∈ Cq−1 and g̃(q−1) ∈ Lipα for all α ∈ (0,1); i.e., |g̃(q−1)(θ) − g̃(q−1)(τ )| ≤
K|θ − τ |α for some K > 0 and all θ, τ ∈ R.

(b) The following estimates hold:

‖Sn(g; ·)− g‖[−π,π] = o

(
1

nq

)
(9)

and

‖S̃n(g; ·)− g̃‖[−π,π] = o

(
1

nq

)
. (10)

Proof. Statement (a) can be found in [13, Exercise 3, p. 81]. In regards to statement (b),
by virtue of Hölder’s inequality, since g ∈ Cq , we have

‖Sn(g; ·)− g‖[−π,π] ≤
∞∑
k=n

(|ak(g)| + |bk(g)|) =
∞∑
k=n

|ak(g(q))| + |bk(g(q))|
kq

≤ √
2

( ∞∑
k=n

1

k2q

)1/2( ∞∑
k=n

(a2
k(g

(q))+ b2
k(g

(q)))

)1/2

. (11)

Meanwhile, it is known [17] that if g ∈ C ∩ V , then

∞∑
k=n

(ak(g)
2 + bk(g)

2) = o

(
1

n

)
. (12)

Now (9) follows as a simple combination of (8), (11), and (12). Estimate (10) is proved
analogously.

The following are some basic properties of the functions D̂(r)
n and D̃

(r)
n .

LEMMA 3. Let ϕn ≡ ϕn(r) > 0 (ϕ̃n ≡ ϕ̃n(r) > 0) and ψn ≡ ψn(r) > 0 (ψ̃n ≡
ψ̃n(r) > 0) be the closest positive roots to the point zero of the equations D̂

(2r)
n (θ) =

0 (D̃
(2r+1)
n (θ) = 0) and D̂

(2r+1)
n (θ) = 0 (D̃

(2r+2)
n (θ) = 0), respectively. Then for any
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fixed r ∈ Z+:

(a) ϕn ∈ (π/2n,π/n) (ϕ̃n ∈ (π/2n,π/n)).

(b) ψn ∈ (π/n,2π/n) (ψ̃n ∈ (π/n,2π/n)).

(c) (−1)r+1D̂
(2r+1)
n (ϕn) 
 n2r+2 ((−1)r+1D̃

(2r+2)
n (ϕ̃n) 
 n2r+3).

(d) (−1)r+1D̂
(2r+1)
n ((−1)r+1D̃

(2r+2)
n ) is increasing on [−ϕn(r + 1), ϕn(r + 1)]

([−ϕ̃n(r + 1), ϕ̃n(r + 1)]), concave on [−ϕn(r + 1),0] ([−ϕ̃n(r + 1),0]) and convex on
[0, ϕn(r + 1)] ([0, ϕ̃n(r + 1)]).

(e) (−1)rD̂(2r)
n ((−1)rD̃(2r+1)

n ) is a 2π -periodic even and infinitely differentiable
function with the global maximum attained at θ = 2πk, k ∈ Z. In addition, the sequence of
the local maxima of |D̂(2r)

n | (|D̃(2r+1)
n |) is decreasing as a function of θ ∈ [0,π] and there

exists a constant K(r) > 1 (K̃(r) > 1) such that

|D̂(2r)
n (0)|>K(r)|D̂(2r)

n (ψn)| (|D̃(2r+1)
n (0)| > K̃(r)|D̃(2r+1)

n (ψ̃n)|) (13)

for n > 1.

Proof. (a) Let us prove the statement for an even n, i.e., n ≡ 2n. By (3) we have

sign D̂(2r)
2n

(
π

2n

)
= sign

(
(−1)r

(
n−1∑
k=1

k2r cos
kπ

2n
+

2n∑
k=n+1

k2r cos
kπ

2n

))

= sign

(
(−1)r

(
n−1∑
k=1

k2r cos
kπ

2n
+

n−1∑
k=0

(2n− k)2r cos
(2n− k)π

2n

))

= sign

(
(−1)r

(
n−1∑
k=1

(k2r − (2n− k)2r ) cos
kπ

2n
− (2n)2r

))

= sign(−1)r+1. (14)

Again by (3), sign D̂(2r)
2n (θ) = sign(−1)r for n ∈ N and θ ∈ [0,π/4n]. The latter

combined with (14) and the Intermediate Value Theorem instantly guarantees ϕn ∈
(π/4n,π/2n). Similarly we treat the case when n is odd.

(b) The statement is proved analogously and we omit the details.
(c) According to (3) and (8),

(−1)r+1D̂(2r+1)
n (θ) =

n∑
k=1

k2r+1 sinkθ <

n∑
k=1

k2r+1 
 n2r+2 (15)

for θ ∈ R. Meanwhile, since ϕn ∈ [π/2n,π/n] (see statement (a)), taking into account the
well-known inequality 2θ/π ≤ sin θ ≤ θ for θ ∈ [0,π/2], we have

n∑
k=1

k2r+1 sin(kϕn) >
2

π

[n/2]∑
k=1

k2r+2ϕn >
1

n

[n/2]∑
k=1

k2r+2 
 n2r+2, (16)

where [a] means the integer part of a number a. A combination of (15) and (16) completes
the proof of statement (c).
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(d) Since the function (−1)r+1D̂
(2r+2)
n is positive on [−ϕn(r + 1), ϕn(r + 1)]

(see (3)), (−1)r+1D̂
(2r+1)
n (θ) is increasing on the interval. Furthermore, (−1)(r+1)D̂

(2r+3)
n

is positive and negative on [−ψn(r+1),0] and [0,ψn(r+1)], respectively, but ϕn(r+1) <
ψn(r + 1) (see statements (a) and (b)). Hence (−1)r+1D̂

(2r+1)
n is concave and convex on

[−ϕn(r + 1),0] and [0, ϕn(r + 1)], respectively.
(e) Let us prove inequality (13) as the rest of the statement is trivial. It is clear that

qn(r) ≡
n∑

k=1

k2r

(
n∑

k>n/4

k2r

)−1

> 1 (17)

for n > 4. However by virtue of (8), limn→∞ qn(r) = 42r+1/(42r+1 − 1) > 1 as well. The
last combined with (17) implies the existence of K(r) such that

qn(r) > K(r) > 1 (18)

for n > 4. Besides

|D̂(2r)
n (ψn)| =

∣∣∣∣
( ∑

kψn∈[π/2, 3π/2]
+

∑
kψn /∈[π/2, 3π/2]

)
k2r coskψn

∣∣∣∣ <
n∑

k>n/4

k2r , (19)

since ψn satisfies the estimate (b) and the sums in (19) have different signs. The rest
instantly follows from (17)–(19), and the identity D̂

(2r)
n (0) = (−1)r

∑n
k=1 k

2r . Validity
of (13) for n ≤ 4 is trivial.

The statements for D̃(r)
n are proved analogously, and we omit the details.

The identity determining the jumps of a function of bounded variation by means of its
differentiated Fourier partial sums has been known for a long time.

THEOREM FC [4, 7]. Let g ∈ V be a 2π -periodic function. Then the identity

lim
n→∞

S′
n(g; θ)
n

= 1

π
(g(θ+)− g(θ−)) (20)

is valid for each fixed θ ∈ [−π,π].
It might be well to point out that the jumps of g ∈ C−1 can be determined directly from

its conjugate Fourier partial sums as well (cf. [23, Theorem (8.13), p. 60]).
Golubov [11] generalized identity (20) for Wiener’s [22] Vp classes of functions and

higher derivatives of the partial sums of Fourier and the series conjugate to the Fourier
series. Further generalizations, extending the results of Golubov to #BV classes of
functions, have been obtained by us.

THEOREM K1 [14, Theorem 1, p. 171]. Let r ∈ Z+ and suppose #BV is the class of
functions of #-bounded variation determined by the sequence # = (λk)

∞
k=1. Then:

(a) the identity

lim
n→∞

S
(2r+1)
n (g; θ)

n2r+1
= (−1)r

(2r + 1)π
(g(θ+) − g(θ−)) (21)
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is valid for every g ∈ #BV and each fixed θ ∈ [−π,π] if and only if

#BV ⊆ HBV. (22)

(b) There is no way to determine the jump at the point θ ∈ [−π,π] of an arbitrary
function g ∈ #BV by means of the sequence (S

(2r)
n (g; ·))∞n=0.

THEOREM K2 [14, Theorem 4, p. 172]. Let r ∈ N and suppose #BV is the class of
functions of #-bounded variation determined by the sequence # = (λk)

∞
k=1. Then:

(a) the identity

lim
n→∞

S̃
(2r)
n (g; θ)

n2r = (−1)r+1

2rπ
(g(θ+)− g(θ−)) (23)

is valid for every g ∈ #BV and each fixed θ ∈ [−π,π] if and only if condition (22) holds.
(b) There is no way to determine the jump at the point θ ∈ [−π,π] of an arbitrary

function g ∈ #BV by means of the sequence (S̃
(2r−1)
n (g; ·))∞n=1.

Remark. Theorems K1 and K2 (see [14, Proofs of Theorems 1 and 4]) implicitly include
the following statement: If g ∈ C ∩ HBV , then the convergence of (21) and (23) to 0 is
uniform with respect to θ ∈ [−π,π].

MAIN RESULTS

Here is the general idea of the method suggested in [16, p. 310]: according to identities
(21) and (23), if g ∈ HBV , then for a fixed r ∈ N and sufficiently large n ∈ N , the function
|DSn|, θ ∈ [−π,π], (see (5)) must attain the largest local maximum in the vicinity of the
actual points of discontinuity of the function g, since at the points of continuity of g,
DSn(θ) = o(1) by virtue of Theorems K1 and K2. Hence we search for the singularity
locations of a function by locating the relatively largest local spikes of the differentiated
partial sums of its Fourier series.

1. Approximation to the Points of Discontinuity

In this section we study how well the point θm(n) approximates the point of discontinuity
θm for m ∈ Z+ fixed. Let us first consider the most general case.

THEOREM 1. Let r ∈ N be fixed and suppose g ∈ HBV is a function with a finite
number, M , of discontinuities. Then the estimate

θm(r;g;n)= θm(g) + 1

[g]m*m(g)
o

(
1

n

)
(24)

is valid for each fixed m = 0,1, . . . ,M − 1.

Proof. Without loss of generality let us make several assumptions. We assume that
M = 2 and r ≡ 2r + 1. The points of jump discontinuity of the function g are θ0 = 0 and
θ1 �= 0. We shall prove estimate (24) for θ0 as it is completely analogous for θ1 by virtue
of the periodicity of g.
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Now let us set

gc ≡ g − [g]0

π
G− [g]1

π
G(θ1; ·). (25)

It is obvious that

gc ∈ C ∩HBV, (26)

since continuity of gc follows from (25). Moreover, since G ∈ V ⊂ HBV and HBV is a
linear vector space (see [21, p. 108]), gc ∈ HBV as well.

Besides, by virtue of (3), (5), and (25),

DSn(g; θ)= [g]0

π
DSn(G; θ)+ [g]1

π
DSn(G(θ1; ·); θ)+DSn(gc; θ)

= (−1)r(2r + 1)[g]0

n2r+1
D̂(2r)

n (θ)

+ (−1)r(2r + 1)[g]1

n2r+1
D̂(2r)

n (θ − θ1)+DSn(gc; θ)
≡ I0(n; θ)+ I1(n; θ)+ Ic(n; θ). (27)

It is obvious that |I0(n; ·)| attains the global maximum at θ = 2πk, k ∈ Z, and without
I1(n; ·) and Ic(n; ·) terms we could exactly locate the discontinuity point θ0 = 0 just by
finding the global maximum of |DSn(g; ·)| on the period [−π,π]. By virtue of (26) and
Remark, Ic(n; ·) contributes a small error independent of θ ∈ [−π,π], i.e., Ic(n; θ)= o(1).
However, according to (2) and (27)

I1(n; θ)= (−1)r(2r + 1)[g]1

n2r+1

(
sin((n+ 1

2 )(θ − θ1))

2 sin θ−θ1
2

)(2r)

= (−1)r(2r + 1)[g]1

n2r+1

(
2r−1∑
k=0

(
k

2r

)(
n + 1

2

)k

sin

((
n+ 1

2

)
(θ − θ1)+ kπ

2

)

×
(

1

2 sin θ−θ1
2

)(2r−k)

+
(
n+ 1

2

)2r sin((n+ 1
2 )(θ − θ1)+ rπ)

2 sin θ−θ1
2

)

= [g]1

*0(g)
O

(
1

n

)
(28)

as well for θ ∈ [−*0(g),*0(g)]. Hence

εn ≡ ‖I1(n; ·)+ Ic(n; ·)‖[−*0(g),*0(g)] = o(1). (29)

Consequently, by virtue of (13), (27), and (29), we have

|I0(n; 0)| − εn > |I0(n;ψn)| + εn (30)

for sufficiently large n ∈ N . However, (30) combined with (6), (27), and statements (a)
and (e) of Lemma 3 already guarantees

|θ0(n)| < ϕn <
π

n

for sufficiently large n ∈ N .
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Next, to achieve a more accurate estimate, namely (24), we use a simple estimate of a
root of an equation.

First, let us mention that since, for sufficiently large n, θ0(n) is the extremum, then

DS′
n(g; θ0(n)) = 0, (31)

which itself implies (see (27)) that

I ′
0(n; θ0(n)) = −(I ′

1(n; θ0(n))+ I ′
c(n; θ0(n))) ≡ Tn(θ0(n)), (32)

where Tn is an nth degree trigonometric polynomial.
Now, according to (7), (29), and (32) we have

‖Tn‖[−*0(g),*0(g)] = 1

*0(g)
o(n). (33)

Let us assume for simplicity that [g]0 > 0. Furthermore, we know I ′
0(n; ·) is an

odd decreasing function, convex on [−ϕn(r + 1),0] and concave on [0, ϕn(r + 1)].
(See statement (d) of Lemma 3.) Hence the linear function passing through the points
(±ϕn(r + 1), I ′

0(n;±ϕn(r + 1))) is less than the function I ′
0(n; ·) on the interval

[−ϕn(r + 1),0] and it is greater than the function I ′
0(n; ·) on the interval [0, ϕn(r + 1)],

respectively. So, due to the continuity of all functions considered, for sufficiently large
n ∈ N , θ0(n) will satisfy the inequality

|θ0(n)| < max |θ̄0(n)| (34)

where θ̄0(n) is a solution of the equation

I ′
0(n;ϕn(r + 1))

ϕn(r + 1)
θ = Tn(θ). (35)

(Here the left-hand side of the equation represents the above-mentioned line.)
Hence, by virtue of (27), (33), and statements (a) and (c) of Lemma 3, we obtain

θ̄0(n) = 1

[g]0*0(g)
o

(
1

n

)

for any solution θ̄0(n), which combined with (34) completes the proof.

Let us now consider a function of greater smoothness.

THEOREM 2. Let r ∈ N be fixed and suppose g is a piecewise continuous function such
that g′ ∈ HBV . In addition, we assume that M(g) and M(g′) are finite. Then the estimate

θm(r;g;n)= θm(g) + 1

[g]m
(
O

( [g′]m
n2

)
+ 1

*m(g)

∑
k �=m

O

( [g]k
n2

))
(36)

is valid for each m = 0,1, . . . ,M(g)− 1.
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Proof. Again for simplicity let us assume that M(g) = 2, M(g′) = 1, r ≡ 2r + 1, and
θ0(g) = θ0(g

′) = 0. Furthermore, let us introduce the function gc now via the identity

gc ≡ g − [g]0

π
G− [g]1

π
G(θ1; ·)− [g′]0

π
G(−1). (37)

Since the conditions of Theorem 2 in particular imply the conditions of Theorem 1,
by similar arguments we conclude that θ0(n) satisfies the estimate (34), where θ̄0(n) is a
solution of Eq. (35) now with

Tn ≡ −I ′
1(n; ·)− I 1

0
′
(n; ·)− I ′

c(n; ·)
≡ −[g]1

π
DS′

n(G(θ1; ·); ·)− [g′]0

π
DS′

n(G
−1; ·)−DS′

n(gc; ·). (38)

Hence, to complete the proof it is enough to estimate Tn. By construction g′
c ∈ C∩HBV

(see (26) and (37)). Consequently, according to (5), (38), and Remark

‖I ′
c(n; ·)‖[−π,π] = ‖DSn(g

′
c; ·)‖[−π,π] = o(1). (39)

The estimate for I ′
1 directly follows from (28), namely,

‖I ′
1(n; ·)‖[−*0(g),*0(g)] = [g]1

*0(g)
O(1). (40)

As regards I 1
0

′
, by virtue of (3), (5), (8), and (38) we have

‖I 1
0

′
(n; ·)‖[−π,π] = [g′]0O(1). (41)

The combination of (34), (35), (38)–(40), and (41) completes the proof.

Now we turn our efforts to study the most promising case: a 2π -periodic function with
one jump discontinuity. As expected, the approximation in this case is significantly more
regular. Namely, the following statement holds.

THEOREM 3. Let r ∈ N be fixed and suppose the function g piecewise belongs to Cq ,
q ≥ 1, and has a single discontinuity at θ0(g) ∈ (−π,π). In addition, we assume that
g(q) ∈ V . Then there exist constants Ki ≡ Ki(r;g), i = 1,2, . . . , p, independent of n, such
that

θ0(r;g;n)= θ0(g) + K1

n2 + K2

n3 + · · · + Kp

np+1 + o

(
1

np+1

)
, (42)

where

p =
{

q, if r is odd,

min(r;q), if r is even.
(43)

Namely,

K1 = r + 2

r

[g′]0

[g]0
and K2 = − r + 2

r

[g′]0

[g]0
, (44)

if r ≥ 2 and q ≥ 2.
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Proof. Let us first assume that r ≥ q ≥ 2. We will establish an algorithm for computing
the constants K1,K2, . . . ,Kp , and perform the actual computation for K1 and K2.

Without loss of generality we assume that θ0 = 0, r ≡ 2r + 1, and q ≡ 2q + 1. Now we
consider the function gc defined by

gc ≡ g − 1

π

2q+1∑
k=0

[g(k)]0G
(−k). (45)

Since the function g in particular satisfies the conditions of Theorem 2, by virtue of (36)
there exists a constant K0 such that

|θ0(n)| < K0

n2 (46)

for n ∈ N . As we know (see (31) and (45)), θ0(n) satisfies the identity

DS′
n(g; θ0(n)) = 1

π

2q+1∑
k=0

[g(k)]0DS′
n(G

(−k); θ0(n)) +DS′
n(gc; θ0(n)) = 0. (47)

By construction g
(2q+1)
c ∈ C ∩ V ⊂ C ∩ HBV . Hence by Remark and Bernstein’s

inequality we have

S(2r+2)
n (gc; θ) = S

(2r+1−2q)
n (g

(2q+1)
c ; θ)= o(n2r+1−2q) (48)

uniformly with respect to θ ∈ [−π,π].
Furthermore, expanding expression (47) into a Taylor series around 0 on the interval

[−K0/n
2,K0/n

2] and taking into consideration (3), (5), (46), and (48), we obtain

[g]0

(
D̂(2r+2)

n (0)θ0(n)+ 1

3!D̂
(2r+4)
n (0)θ0(n)

3 + 1

5!D̂
(2r+6)
n (0)θ0(n)

5 + · · ·

+ 1

(2q + 2)! D̂
(2r+2q+3)
n (µ0,n)

(2K0)
2q+2

n4q+4

)

+ [g′]0

(
D̂(2r)

n (0)+ 1

2! D̂
(2r+2)
n (0)θ0(n)

2 + 1

4!D̂
(2r+4)
n (0)θ0(n)

4 + · · ·

+ 1

(2q + 1)! D̂
(2r+2q+1)
n (µ1,n)

(2K0)
2q+1

n4q+2

)
+ · · ·

+ [g(2q+1)]0

(
D̂

(2r−2q)
n (0)+ D̂

(2r+1−2q)
n (µ2q+1,n)

2K0

n2

)
+ o(n2r+1−2q) = 0, (49)

where |µk,n| <K0/n
2, k = 0,1, . . . ,2q + 1.

It follows from (3) and (8) that all error terms in the Taylor expansion have order
O(n2r−2q).

The expression for D̂(r)
n (0), r ∈ Z+, (see (8) and (46)) suggests seeking an expression

of θ0(n) in the form (42).
According to Eq. (49), since the error term has an order o(n2r−2q+1), all coefficients

of nk , k ≥ 2r − 2q + 1, must equal to 0. This condition generates a set of equations with
respect to the yet unknown constants K1, K2, . . . ,K2q+1.
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One by one, we set up the equations for powers of n, with decreasing order of
degree, starting from n2r+1. It is clear that by (8), (46), and (49), only two terms,
namely [g]0D̂

(2r+2)
n (0)θ0(n) and [g′]0D̂

(2r)
n (0), contribute n2r+1 and n2r . Consequently,

the comparison of the coefficients leads to the following system of linear equations with
respect to K1 and K2 (see (3), (8), and (42)):

(−1)r+1[g]0
n2r+3

2r + 3

K1

n2
+ (−1)r [g′]0

n2r+1

2r + 1
= 0

and

(−1)r+1[g]0

(
n2r+2

2

K1

n2 + n2r+3

2r + 3

K2

n3

)
+ (−1)r [g′]0

n2r

2
= 0,

which instantly implies (44).
Furthermore, let us observe that the highest degree of n contributed by each term of the

sequence Qm ≡ (D̂
(2r+2m−2i)
n (0)θ0(n)

2m−i−1)2m−1
i=0 , m = 1,2, . . . , q + 1, is 2r − 2m+ 3.

Now we proceed by induction. Let us assume that the constants K1, K2, . . . ,K2m−3,
and K2m−2 are already defined by setting up equations with respect to the coefficients of
n with a degree greater than 2r − 2(m − 1) + 3. Next, we shall show that a new system
of equations for the coefficients of n2r−2m+3 and n2r−2m+2 represents a consistent system
of linear equations with respect to K2m−1 and K2m.

Indeed, the only terms that may contribute unknowns K2m−1 and K2m are in the
sequences Qj , j ≤ m. Hence, by (8) and (42) we have

D̂
(2r+2j−2i)
n (0)θ0(n)

2j−i−1

= ±
(

n2r+2j−2i+1

2r + 2j − 2i + 1
+ lower degree terms

)

×
(
K1

n2
+ · · · + K2m−1

n2m
+ K2m

n2m+1
+O

(
1

n2m+2

))2j−i−1

. (50)

Consequently, the highest degree of n contributed by this product with factor K2m−1 is

n2r+2j−2i+1

2r + 2j − 2i + 1

(
K1

n2

)2j−i−2
K2m−1

n2m

 n2r−2m+3+2(1−j).

However 2r − 2m+ 3 + 2(1 − j) < 2r − 2m + 3 unless j = 1. Hence only the sequence
Q1 = {D̂(2r+2)

n (0)θ0(n), D̂
(2r)
n (0)} contributes the constant K2m−1 and it clearly appears

in the first degree in the expression for θ0(n). (We treat the case for K2m similarly.) In
addition, the matrix of the linear system with respect to K2m−1 and K2m is triangular with
nonzero diagonal entry (−1)r+1[g]0/(2r + 3) �= 0, and that guarantees the solvability of
the system.

To prove the theorem for the case r < q we need some minor changes in the arguments.
First, it is possible now that 2r + 2j − 2i < 0, and one must use the corresponding
expansion (see (8)) for D̂(2r+2j−2i)

n (0) in estimate (50). Second, to estimate the error term
in (47), i.e., (48), let us mention the following: since g

(2r+2)
c ∈ C2q−2r−1, then by virtue

of (9), expanding gc into a Taylor series around 0 on the interval [−K0/n
2,K0/n

2], we
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have

S(2r+2)
n (gc; θ0(n)) = Sn(g

(2r+2)
c ; θ0(n))

= g(2r+2)
c (θ0(n)) + o

(
1

n2q−2r−1

)

= g(2r+2)
c (0)+ g(2r+3)

c (0)θ0(n)+ · · ·

+ 1

(2q − 2r − 1)!g
(2q+1)
c (µn)

(2K0)
2q−2r−1

n4q−4r−2 + o

(
1

n2q−2r−1

)
,

which, ignoring the constant factor, represents the desired estimate for the error term.
The reason p = min(r;q) for an even r is simple: a key point in deriving expansion (42)

is a representation of D̂(r)
n (0), r ∈ Z, as powers of n (see Lemma 1). However in a Taylor

expansion (49) for the partial sums of the conjugate series we will eventually have the term
D̃

(−1)
n (0) = −∑n

k=1 1/k 
 − lnn, which is not representable as a sum of powers of n with
constant coefficients. The rest of the proof is completely analogous.

Taking advantage of the explicit knowledge of the coefficients (44), using a simple
linear combination of expansion (42), we significantly improve the accuracy of the initial
approximation. Namely, the following statement holds.

COROLLARY 1. Suppose the function g piecewise belongs to Cq , q > 2, and has a
single discontinuity at θ0(g) ∈ (−π,π). In addition, we assume that g(q) ∈ V . Then for
each fixed r1, r2 ∈ N , 2 < r1 < r2, there exist constants Ki ≡ Ki(r;g), i = 1,2, . . . , p− 2,
independent of n, such that

r2(r1 + 2)

2(r2 − r1)
θ0(r2;g;n)− r1(r2 + 2)

2(r2 − r1)
θ0(r1;g;n)= θ0(g)+ K1

n4 + · · · + Kp−2

np+1 + o

(
1

np+1

)
,

(51)

where p is defined by (43).

2. Approximation to the Jumps

Now let us study approximation to the jumps of a function.

THEOREM 4. Let r ∈ N be fixed and suppose g is a piecewise continuous function such
that g′ ∈ HBV . In addition, we assume that M(g) and M(g′) are finite. Then the estimate

DSn(r;g; θm(n)) = [g]m +O

(
1

n

)

is valid for each m = 0,1, . . . ,M(g)− 1.

Proof. Again for simplicity we assume that M(g) = 2, M(g′) = 1, r ≡ 2r + 1, and
θ0(g) = θ0(g

′) = 0. By virtue of (37) we have

DSn(g; θ0(n)) = [g]0

π
DSn(G; θ0(n)) + [g]1

π
DSn(G(θ1; ·); θ0(n))

+ [g′]0

π
DSn(G

(−1); θ0(n))+DSn(gc; θ0(n)). (52)
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Further analysis is trivial as we take a Taylor expansion of (52) around 0 on the interval
[−K0/n

2,K0/n
2]. By virtue of (3) and (5) we get

DSn(g; θ0(n)) = (−1)r(2r + 1)[g]0

n2r+1

(
D̂(2r)

n (0)+ D̂(2r+1)
n (νn)

2K0

n2

)

+ (−1)r(2r + 1)[g]1

n2r+1
D̂(2r)

n (θ0(n)− θ1)

+ (−1)r(2r + 1)[g′]0

n2r+1 D̂(2r−1)
n (θ0(n))

+ (−1)r(2r + 1)π

n2r+1 S(2r)
n (g′

c; θ0(n)), (53)

where |νn| <K0/n
2.

Taking into account that g′
c ∈ C ∩HBV , the rest of the proof follows from (3), (8), (28),

(53), and Remark.

Now, an interested reader will easily fill out the details of proof for the following
statement.

THEOREM 5. Let r ∈ N be fixed, and suppose the function g piecewise belongs to Cq ,
q ≥ 2, and has a single discontinuity at θ0 ∈ (−π,π). In addition, we assume that g(q) ∈ V .
Then there exist constants Ki ≡ Ki(r;g), i = 1,2, . . . , p, independent of n, such that

DSn(r;g; θ0(r;n)) = [g]0 + K1

n
+ K2

n2
+ · · · + Kp

np
+ o

(
1

np

)
, (54)

where p is defined by (43).
Namely,

K1 = r

2
[g]0. (55)

Extrapolating expansion (54) in r , based on identity (55), we improve the accuracy of
approximation. Namely, the following statement holds.

COROLLARY 2. Suppose the function g piecewise belongs to Cq , q ≥ 2, and has a
single discontinuity at θ0(g) ∈ (−π,π). In addition, we assume that g(q) ∈ V . Then
for each fixed r1, r2 ∈ N , 2 ≤ r1 < r2, there exist constants Ki ≡ Ki(r1; r2;g), i =
1,2, . . . , p − 1, such that

r2

(r2 − r1)
DSn(r1;g; θ0(n))− r1

(r2 − r1)
DSn(r2;g; θ0(n)) = [g]0 +

p−1∑
i=1

Ki

ni+1 + o

(
1

np

)
,

(56)
where p is defined by (43).
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